

Sustainable dairy breeding using genomic selection and crossbreeding

Morten Kargo Sørensen

The breeding machine

Input:

- Breed
- Biological circumstances
- Economic frames
- Political frames
- Resources

- -Genetic gain
- -Inbreeding
- -Risk
- -Costs

Sustainable breeding

- Broad breeding goals taking all economic important traits into consideration
 - Expectation of the future
 - Welfare issues
 - Non marked values
- Inbreeding
 - An acceptable future rate of inbreeding must be ensured
 - Use of optimal contribution selection methods

Total Merit Indices - history

- 1975-1985 TMI- introduced in Nordic countries including production and functional traits
- 1985-2007 TMI's in Nordic countries gradually improved more traits better methods
- 1990-2000 TMI based on few traits popular in many countries
- 2008 Joint Nordic TMI called NTM
- Today everyone see the need for having a TMI including all economic important traits

Gain from NTM for HOL

Correlations between EBV's for Al bulls born 2001-2003

Trait	Correlation with NTM
Yield	0.49
Growth	0.00
Fertility	0.39
Calving - direct	0.28
Calving - maternal	0.37
Udder health	0.46
Other health	0.47
Body	-0.04
Feet & legs	0.12
Udder	0.40
Milking speed	0.09
Temperament	0.03
Longevity	0.51

Overall aim of NTM

- High yielding cow
- Improved genetic level for functional traits health & fertility
- Leads to improved longevity and economically enhanced dairy cows

Fulfilled!!

How does genomic selection affect genetic gain and sustainability?

Genomic selection reduce the generation interval

$$\Delta G = \frac{i \cdot r_{IA} \cdot \sigma_{A}}{(L)}$$

But do also affect the other factor!

Traditional progeny test scheme

Traditional progeny test scheme and DGV's

Effect of two stage selection

Relative genetic gain

Effect of young Al sires - Turbo

Relative genetic gain

* apr. 50 mill DKK per year in Denmark

Overall effect of number of genotypings

ACS and MKS, 2010

Composition of total gain

Potential "new" traits

 In the "old" plan we couldn't wait for information in later lactations

- Now a balance between expression in 1st
 2nd and 3rd lactation is possible
 - Yield
 - Mastitis
 - Fertility

Genomic selection can

- Improve overall genetic gain
- Move the balance in genetic gain towards functional traits
- In theory reduce rate of inbreeding
 - But what about reality?

Crossbreeding - also a way towards sustainability

Trait	Heterosis
Yield	2 - 3%
Fertility and calving ease and longevity	10 - 15%
Total merit	10%

Survey among dairy producers using crossbreeding

69 producers were asked about:

- Crossbreeding system
- Why they started crossbreeding
- Benefit from crossbreeding
- Problems

49 answers received

Crossbred herd have the same management level as purebred herds!

	Holstein cows in:	
	Purebred herds	Herds selected for the survey
305-day protein yield (kg), 1st lact.	274	269
Stillbirth (%), heifer	8.3	7.8
Days from 1 st to last ins., cows	53	52
% of cows entering 2 nd lact.	78	81

Breeds and crossbreeding methods

Methods

- 55% of herds use 3 breeds
- 35% of herds use 2 breeds
- 10% of herds use another system

Breeds

- RDM, Holstein, Jersey many herds
- SRB, Montbéliarde, Finish Ayrshire some herds
- Brown Swiss, Fleckvieh few herds

Parts of females being crossed

Answers

- 40 producers still apply crossbreeding
 - 34 producers have used crossbreeding programs for more than 3 years
- 9 producers have stopped crossing

Crossbreeding meet the expectations of dairy producers

- 33 out of 34 producers have a positive or really positive outcome
 - 50 60% for longevity, health and feet and legs
 - 15 30% for fertility, economy, plus calfand cow mortality
 - All herds expect to have a "crossbred" herd 5 years ahead

Important challenges

- Unequal size among cows
- Lack of acceptance among colleagues

Challenges for the advisory system

- More information/knowledge
- Possibility for inclusion of more breeds
- Better management tools

Analyses of crossbred cows in Denmark

Increasing number of females with

and

Demands for animals included in the analyses

- At least 6 producing crosses and at least 6 producing Holstein cows per birth year within herd
- Crosses are defined as animals with "red" sire and "black" dam
- Animals born in 2004 and later

Data: 4,314 HOL and 1,979 crosses

About the results

- Results are given as within herd differences between crosses and Holstein
- The level of crosses is:

The level of pure bred is:

305 days yield

	Milk, kg	Fat, kg	Protein, kg
1 st lactation	- 177	+ 4	- 1
2 nd lactation	- 203	+ 6	+ 1

Survival until second calving

+ 2 percentage point

(78 % versus 76 %)

Stillbirth and calving ease

Stillbirth%

% easy calving

First calving

- 1.3 %*

+ 5 %*

* Given in percentage point

Fertility traits

	Age at first ins.	Interval from first to last ins.	Number of ins.
Heifers	- 8 days	- 2 days	- 0.06
1. parity	- 5 days*	- 8 days	- 0.10

^{*} Days from calving to first insemination

If the analyses were based only on crosses with high SRB contribution

869 animals

1.991 animals

X

-

X

- then results were more favorable for the crosses

305 days yield 1st lactation:

Milk, kg - 34
Fat, kg + 8
Protein, kg + 5

Heifer calving:

Stillborn, percentage point - 2 % Easy calving, percentage point + 4 %

Fertility 1st lactation:

Interval from calving to first ins. - 4 days
Interval from first to last ins. - 7 days

Equality between Danish breeds

- Fertility
 Still birth etc.
 Actual economic values
 The differences than 25 europes

Economical results from a selected group of Danish Dairy farms (Centrovice, 2009)

	Jersey	HOL	RDM
No. herds	55	33	23
Herd size	164	178	154
Avr. kg ecm	8549	9933	9016
Animal sale	+ 135 \$	+ 211 \$	+ 432 \$
Profit per year cow	2586 \$	2590 \$	2821 \$

Recommended breeds:

- Breed group I:
 - Holstein
- Breed group II:
 - Danish Red
 - SRB (Swedish Red)
 - FAY (Finish Ayrshire)
 - NRF (Norwegian red)
- Breed group III:
 - Montbéliarde
 - Jersey

Traditional crossbreeding system

Can it be done another way?

COMBI CROSS

Level 1 Pure breeding

Level 2
Two breed cross

Level 3
Three breed cross

Distribution of breed groups using COMBI CROSS in a 200 cow herd

70 pure bred cows

50 two bred cows

80 three bred cows

80 beef cross per year

Conclusion

- Those producers applying crossbreeding are satisfied
- Cross bred animals are competitive
- Heterosis is also expressed in well managed herds
- Equal breed are available
- Pure breeding is necessary
- New systems in line

Crossing is a strong alternative which increase sustainability in dairy farming