NorFor - status and feed optimization

NØK 2010

Harald Volden1,2

1TINE SA

2Norwegian University of Life Sciences
Outline

1. User activity and scientific status

2. Integrated feed evaluation and feeding strategies

3. Ration optimization. Examples of using NorFor
User status

- Denmark: low
- Iceland: moderate
- Norway: moderate
- Sweden: moderate/increasing

Why moderate activity?
- A new system. A new method of ration formulation
 - Advisors skilled in the art? A complex system
- Scientifically rooted
- Not integrated to adjacent computer programs
- Competition from other systems
Scientific status

- The system will be scientifically published in 2010
 - A detailed description of the system
 - Model Equations and computer optimization procedure
 - The NorFor system is the only worldwide feed evaluation system with a true non-linear feed optimizer
 - An evaluation of the system
Model evaluation. Milk protein production. Nordic experiments. 429 diets

\[y = 0.9755x + 39.478 \]

\[R^2 = 0.9342 \]

Volden et al.
Model evaluation. Forage intake. Icelandic experiments. Individual cows

Multiparous cows

\[y = 0.9236x + 0.8516 \]

\[R^2 = 0.8391 \]

\[SEP = 0.52 \text{ kg} \]

Baldursdóttir, 2010
Feed evaluation and feeding strategies

- Ration formulation and optimization

- Alternative feeding strategies
 - Individual cows
 - Standard lactation curve
 - Partial mixed ration (PMR)
 - Total mixed ration (TMR)

- Goal: high feed efficiency
Feeding according to standard lactation curve

Concentrate levels

Kalving 60 dager 120 dager 147 dager 203 dager 305 dager

Styrt nedtrapping fra 120 dager

5 kg over planlagt avdrått
Planlagt avdrått
5 kg under planlagt avdrått

Concentrate level optimized from:
- Target milk production level
- Optimized forage or PMR intake
Feeding according to standard lactation curve. Body weight change

Herd no. 1

Calculated feed conversion: 1.56 kg ECM per kg DM

Savings: \(\approx 95.000 \text{ NOK} \)

2.800 NOK/cow/yr

Volden et al., 2009
Feeding according to standard lactation curve week 1-13. Body weight change
Feeding strategy and body weight change

![Graph showing body weight change over lactation weeks for Herd 1 and Herd 2.](image)
The feeding strategy is programmed in the herd management system.
NorFor ration optimization.
Example from a Norwegian herd

Optimization variables

Possible variables: 84

- Ration cost: 1
- Feed intake: 7
- Energy: 5
- Protein and amino acids: 13
- Nutrients: 6
- Rumen metabolism: 13
- Total tract digestibility: 5
- Chewing time: 1
- Minerals: 23
- Vitamins: 7
- Nitrogen excretion: 4

NorFor standard

1. Ration cost
2. Fill value (feed intake)
3. Energy balance
4. Energy intake
5. AAT balance
6. AAT/NEi
7. PBV
8. Fatty acids
9. Rumen impact factor (NDF degradation)
NorFor ration optimization. Example TMR.

<table>
<thead>
<tr>
<th>Keenan</th>
<th>NorFor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition, % of DM</td>
<td></td>
</tr>
<tr>
<td>Grass silage</td>
<td>50.0</td>
</tr>
<tr>
<td>Untreated straw</td>
<td>3.8</td>
</tr>
<tr>
<td>Wheat (rolled)</td>
<td>23.3</td>
</tr>
<tr>
<td>Dried beet pulp</td>
<td>2.7</td>
</tr>
<tr>
<td>Calcium fat</td>
<td>0.47</td>
</tr>
<tr>
<td>Protein supplement (soybean + maize gluten meal + Rape seed)</td>
<td>17.7</td>
</tr>
<tr>
<td>Rapeseed, Expro</td>
<td></td>
</tr>
<tr>
<td>Mineral + vitamins</td>
<td>2.0</td>
</tr>
<tr>
<td>Chemical composition</td>
<td></td>
</tr>
<tr>
<td>Crude protein, g/kg DM</td>
<td>181</td>
</tr>
<tr>
<td>Starch, g/kg DM</td>
<td>192</td>
</tr>
<tr>
<td>NDF, g/kg DM</td>
<td>345</td>
</tr>
<tr>
<td>Lysine:methionine:histidine</td>
<td></td>
</tr>
<tr>
<td>Ration cost, NOK/kg DM</td>
<td>1.81</td>
</tr>
</tbody>
</table>
NorFor ration optimization. Example TMR.

<table>
<thead>
<tr>
<th></th>
<th>Keenan</th>
<th>NorFor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target milk yield</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Expected feed intake, kg DM</td>
<td>21.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Measured feed intake</td>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td>Ration cost, NOK/cow/day</td>
<td>38.20</td>
<td>32.50</td>
</tr>
<tr>
<td>Savings, NOK/day. 36 cows</td>
<td>+205</td>
<td></td>
</tr>
<tr>
<td>Savings, NOK/cow/yr</td>
<td>2070</td>
<td></td>
</tr>
</tbody>
</table>

Production results in April and May 2010:
Average ECM: 28.6 kg/day
Fat: 4.10%
Protein: 3.53%.
Urea,mM:4.9 mM
Average days in milk:187
Experience by use of NorFor.
Nina and Inge Brekke

- NorFor and TINE OptiFôr used since the start in 2007
- The experience is very good.
 - utilise the system to formulate and control rations
 - Evaluate forage quality and production response
 - Used in combination with an economical evaluation program (EK)
 - Set target milk yield and seasonal feed planning
 - Use the system to understand changes in feeding responses

- Feeding strategy:
 - According to standard lactation curve after 90 days

- TINE OptiFôr (The Norwegian computer tool)
 - User friendly and easy to learn, although it is a complex system
Experience by use of NorFor.
Torill Midtkandal and Johan Øvreeide Godø

- NorFor and TINE OptiFôr used since the start in 2007
- The experience is very good.
 - utilise the system to formulate and control rations
 - Evaluate forage quality
 - Setting target forage quality
 - Using the program as a computer game

- After introduction of the system:
 - a very rapid change in production
 - Higher milk yield
 - Higher milk fat content

- An important planning tool when heading for higher milk yield

- TINE OptiFôr
 - User friendly and easy to learn
Conclusions

- The use of Norfor is moderate
- The test results are very good
- The system must be combined with efficient feeding strategies
- The system focus on feed costs and optimum ration formulation