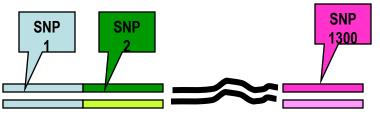


Implementation of genomic selection and crossbreeding in dairy cattle

Dr. Gary Rogers Geno Global Hamar, Norway

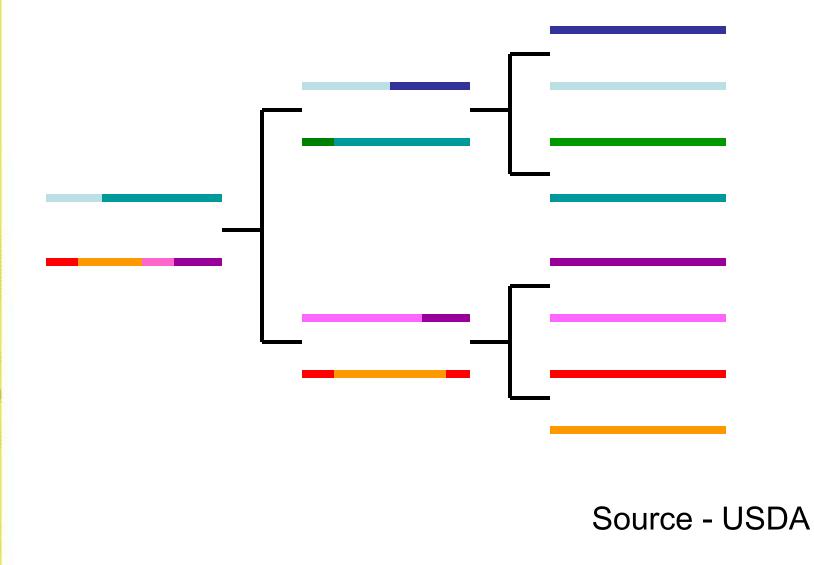
&

New Market, Tennessee, USA grogers200@yahoo.com


Genomic Selection

- Extends our current quantitative selection approach – but revolutionary
- Still a "black box" approach to selection do not know exact function of individual genes
- Not "ditching" old basic concepts just enhancing them
- Does not eliminate the need for data on important families & individuals

Chromosomes, SNPs & "genomic" evaluations (estimated breeding values)


Example:1 pair of chromosomes

- Values for each SNP for each trait can be estimated
- Genomic evaluations for young animals are approximately:
 - SUM of all SNP values across all 30 pairs of chromosomes
 - Usually combined with parent averages/pedigree merit
- Genetic evaluations for older animals will include SNP and performance information

Genomic Pedigree (1 pair of chromosomes)

geno

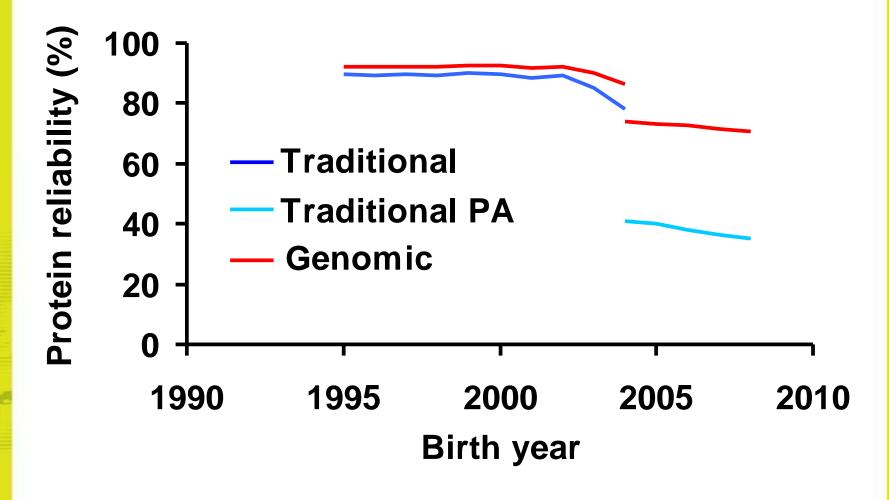
Estimation of genetic values from SNPs

- Not trivial
- Need a reference population to estimate SNP effects
- Need thousands of SNPs for "genome wide selection" (50,000 SNP chip & moving to 800,000 SNP chip)
- Do not need to know "actual" value of all the genes located around all the SNPs
- SNP values need to be re-estimated frequently

Genetic progress per year

Selection response/year = i * r_{IA} * σ_B / L where,

- i = selection intensity
- r_{IA} = selection accuracy
- σ_A = genetic standard deviation
- L = generation interval or age of parents when progeny are born



Genomic Selection

- Increased reliability for genetic evaluations on young animals
 - Can get accurate genetic evaluations at birth (or before)
 - Increase in reliability equivalent to having >15 daughters
- Increased reliability for genetic evaluations on cows
- Possibly reduce generation interval by ½ or more in sire selection
- Could use AI bulls without daughters for:
 - breeding the entire dairy herd
 - breeding the next generation of young bulls to be used for AI
 - Could use (more) heifers for next AI bulls

Genomic vs. traditional reliability – protein

Source - USDA

Enhanced genetic change from genomic selection

Near future - a 5% to 15% increase in genetic gain
Long term - a 50% increase in genetic gain – theoretical increase is higher

Genomic Selection Issues

- Cost of program
- Population size & linkage disequilibrium
 - Larger reference population results in improved accuracy of genomic predictions
 - Highly selected populations have more linkage disequilibrium
- Reliability of prediction for lowly heritable traits has been disappointing (except DFS data)

Genomic Selection Issues (continued)

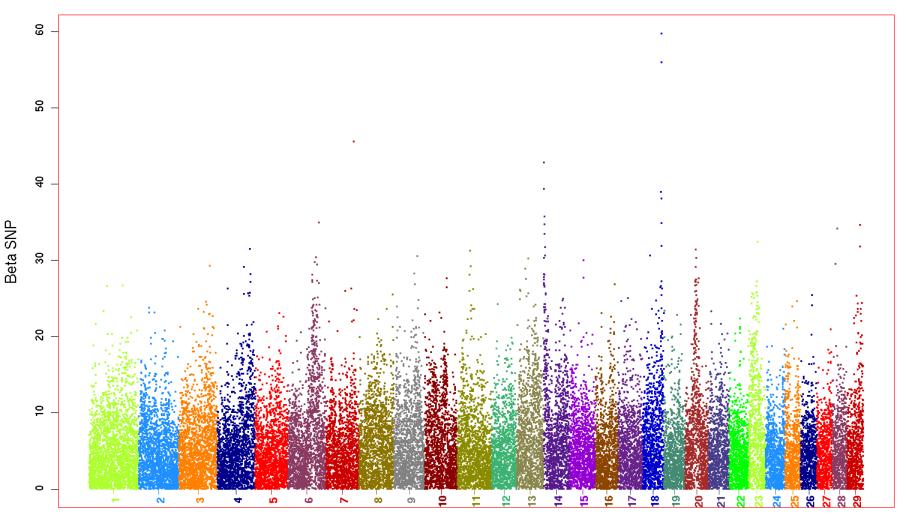
- Potential increase in inbreeding (homozygousity)
 - Actual selection for the same SNPs (directly choosing animals with the same sequences/genes)
 - Those selected will be more homozygous than their pedigree will indicate
- Could allow use of some non-traditional or outcross families to reduce inbreeding?
 - No documented success yet
- Could use SNPs to decrease inbreeding

Genomic Selection Issues (continued)

- Inbreeding from genomic selection could lead to an increase in crossbreeding in commercial herds
- Could use genomic selection to create inbred lines for crossbreeding
 - Maize & other important plants
 - Poultry & swine

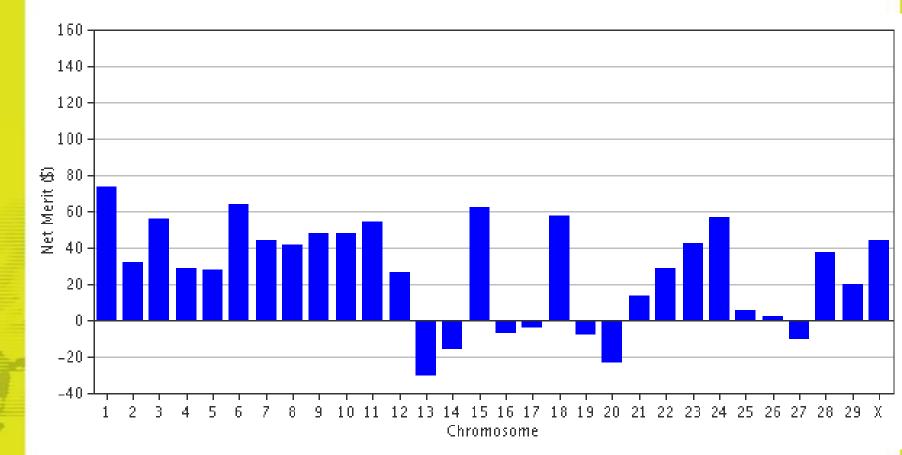
Implementation of genomic selection in populations

- Improved young bull selection & continue progeny testing
 - Geno, ABS Global, Select Sires, etc. current plan
- Change number of bulls progeny tested
- Use young bulls with genomic information like we currently use proven bulls (with daughter information)
 - Will get daughter information
 - Variable uptake by companies & herds
 - Risk differs compared with proven bulls
 - Team approach to bull usage


Country	Reference bulls
Germany	17,000
Netherlands	16,000
France	16,000
Scandinavia (DFS)	16,000
United States	9,300
Canada	8,800

Source - USDA

SNP effects for US Net Merit

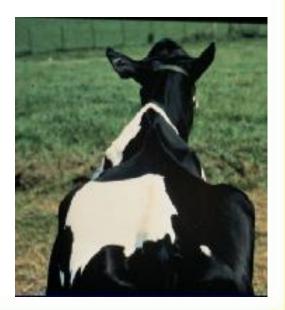

Net_Merit

Source - USDA

Chromosome

Net Merit by Chromosome

Source - USDA


Summary on Genomic Selection

- Enhanced quantitative based selection
- Substantially increase rates of genetic improvement
- Require some changes in breeding programs to reap the benefits
- Take some time to be optimized
- Inbreeding must be properly considered

Crossbreeding in the US & other countries

- Farm level economics has changed
- Successful genetic improvement in yield (genetic antagonism with reproduction, diseases & mortality)
- Selection for thinner cows
- Inbreeding

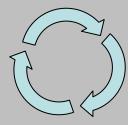
Crossbreeding around the world

- New Zealand 30% to 50% crossbred cows
- Australia
- Europe
- US 9.1 million dairy cows 53,000 herds
 - Approximately 80-90% Holstein genes
 - Many Jersey X Holstein crosses (>6% of cows in national recording)
 - >600,000 crossbred cows of milking age
 - Perhaps 1 million crossbred dairy cows in US very soon

- Benefits of crossbreeding in "commercial herds"
 Higher farm profit (cheaper cost of production)
 - Hybrid vigor (heterosis) & relief for inbreeding
 - Healthier cows with improved reproduction & survival
 - Improved calving performance

•

- Improved genes for some traits from a different breed
- Can simplify some aspects of mating system (no worry over inbreeding when mate cows)


Potential negative aspects of crossbreeding

- Change in traditional breeding policy
- Identifying the appropriate breeds to use

CROSSBREEDING MANAGEMENT SYSTEM

Rotational Crossbreeding with 3 breeds primarily

Holstein, Jersey and Norwegian Red

- Could involve Brown Swiss and other breeds in some circumstances

CROSSBREEDING MANAGEMENT SYSTEM

3 breed rotational crossbreeding (begin with Holstein cow)

Jersey sire (J) X Holstein cow (H)

Get JxH cow Norwegian Red sire (N) X JxH cow

Get NxJxH cow

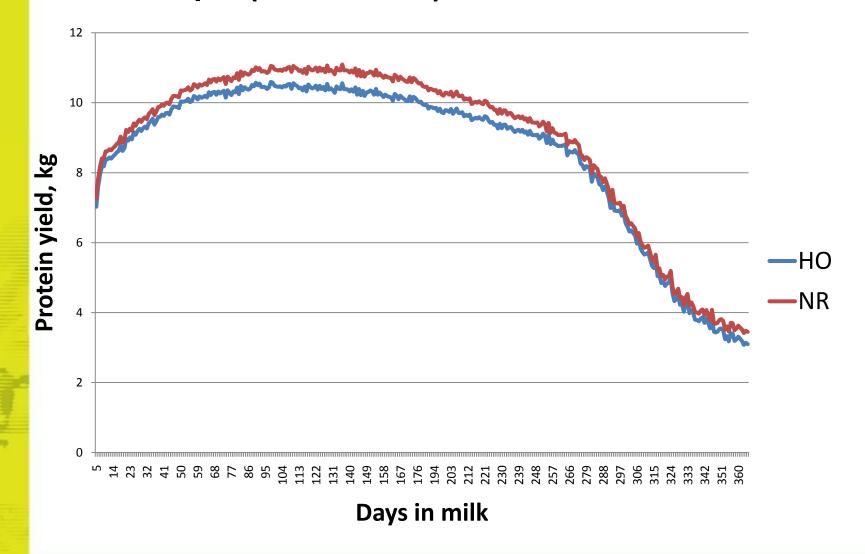
Holstein sire (H) X NxJxH cow

Get HxNxJxH cow

Start rotation over with J sire on HxNxJxH cow

Creative Genetics of California & Select Sires

PROCROSS MONTBELIARDE / HOLSTEIN / SWEDISH RED / HOLSTEIN / MONTBELIARDE



Preliminary Results (April 2010) - 8 US herds – 900 1st Lactation projected 305 d records (min 50 days in milk) Least squares means

		Holstein	NRF sired crosses	Jersey sired crosses
# cov	/9	987	72	159
Milk (lbs.)	18,671ª	17,950 ^{ab}	17,194 ^b
Fat (I	bs.)	736	709	746
Prote	in (lbs.)	589 ^a	589 ^{ab}	553 ^b
SCS		2.65 ^b	1.97ª	2.80 ^{ab}

^{a,b} Least squares means with different superscripts differ P<.05

Breed of sire effect on daily protein (kg/day) 60 Canadian herds - preliminary results U of Guelph (June 2010)

Preli	adian project (60 herds) – June 2010						
		Holstein	Norwegian Red X Holstein				
# cov	vs	3036	117				
	return rate	.59	.69				

NRF crosses in the USA

Crossbreeding approaches & spreadsheet

Version 5 - Author Gary W. Rogers

Introductory comments - move cursor here for note

Partial Budget (12 mo basis - steady state - replacement enterpise excluded)	Input Column			T	WO	BREED	CROSSES	
	He	olstein	Jersey	JE	E X HO	BS X HO	NR X HO	MO X HO
Income minus expense/year		437,180	364,240		577,50	3 501,82	5 567,73	468,206
Income minus expense/cow/year		437	<mark>′ 364</mark>		57	<mark>8 50</mark>	2 <mark>56</mark>	8 468
Number of cows	1000	1000) 1000		100	0 100	0 100	00 1000
Deviation from 1st lact Holsteins in very high producing herds			6300		265	0 115	0 130	00 1500
Modifier for deviation from Holstein	0		6300		265	0 115	0 130	00 1500
1st lactation 305 day milk mean (Holstein base for input)	20,000	20,000	13,700		17,35	0 18,85	0 18,70	18,500
2nd lactation 305 day milk mean		24000	16440		2082	0 2262	.0 2244	0 22200
3rd and later 305 day milk mean		26000	17810		2255	5 2450	5 2431	0 24050
Weighted mean 305 day milk		23300	15960.5		20212.7	5 21960.2	21785	.5 21552.5
Adjustment for calving interval on annualized milk		0.975	0.982		0.98	4 0.98	0.98	0.984
Annualized milk sold per cow		22727	15667		1988	5 2153	2 2143	32 21203
Average pounds milk/cow/day for all cows		62.3	42.9		54.	5 59	.0 58	.7 58.1
Fat percentage (Holstein base for input)	3.654	3.654	4.583		4.11	9 3.82	3.77	3.777
Protein percentage (Holstein base for input)	3.006	3.006	3.559		3.282	5 3.159	5 3.11	3 3.113
Other solids percentage		5.7	· 5.7		5.	7 5	.7 5	.7 5.7
Fat value \$/pound	\$1.40	1.4	1.4		1.	4 1	.4 1	.4 1.4
Protein value \$/pound	\$3.00	:	3 3			3	3	3 3
Other solids value \$/pound	\$0.05	0.05	0.05		0.0	5 0.0	5 0.0	0.05
Milk value \$/100 pounds		14.42	. 17.38		15.9	0 15.1	2 14.9	14.91
Net value of PPD, ovr ord prem, chkoff, oth deducts & haul \$/cwt	\$1.00		1			1	1	1 1
Net milk value \$/100 pounds		15.42	. 18.38		16.9	0 16.1	2 15.9	15.91
Milk value \$/cow/day		9.60) 7.89		9.2	1 9.5	61 9.3	9.24
Average 4% fat corrected milk per cow per day		70.6	55.9		66.	4 68	.8 67	.9 67.2
Average cow weight (Holstein base for input)	1395	139	5 990		119	3 139	5 131	6 1418
Dry matter intake for milking cows based on NRC equations		52.6	6 41.1		48.	1 51	.9 50	.5 51.7

Summary

- Crossbred cows will return more net revenue per cow per year than pure Holsteins in most herds in the US
- Various crossbreeding schemes are in use
- Three breed rotations:
 - Holstein, Nordic Reds and Jersey (likely most profitable in most US herds)
 - Holstein, Nordic Reds and Montbeliarde or Fleckvieh or Brown Swiss
 - Other combinations