

TINE Rådgiving

Climatic and environmental aspects in future cattle production

Harald Volden

TINE SA

Department of Animal and Aquacultural Sciences, UMB

Phosphorus

Nitrogen

Methane

Strategies to increase nitrogen utilization and decrease nitrogen losses

Why

- •Optimisation of production outcome, €
- Environment and climate
 - • N_2O as a greenhouse gas
- At farm level
 - Manure management
 - Crop and production
 - Animal production level (meat and milk per unit of land or energy)
- Animal level
 - Diet formulation and N utilisation
 - Feeding strategies
 - Feed efficiency

Proportion of N intake excreted in milk and manure

N metabolism in ruminants

Strategies to increase nitrogen utilization

- Optimal PBV
 - Increased rumen N efficiency
- Optimal AAT
 - Increased N efficiency in the mammary gland
 - Individual amino acids

Increased N efficiency

TINE Conclusion nitrogen

- Reducing dietary CP to the "requirement" will be effective for reducing excessive excretion of N
 - Especially the environmentally labile form of N
- Important to identify the crossing point between product outcome (€) and the environmentally cost to optimise our N use in animal/agricultural production
- Higher focus on ration formulation will improve the N efficiency and economic sustainability of animal production systems.

- Evaluation of dietary factors affecting methane production
- Danish, Norwegian and Swedish experiments
- Methane prediction implemented in NorFor from August 2012

Data description (47 obs.)

- Days in milk: 170; 92-240 days
- Body weight: 605; 553-691 kg
- Dry matter intake: 17; 8-23 kg
- Net Energy Lactation (NEL): 114; 51-152
- Energy concentration (NEL/DM): 6,7; 5,3-8,1
- Energy corrected milk (ECM): 21; 0-35 kg
- Concentrate proportion: 32; 0-51 % of DM
- Methane, % of gross energy (GE): 6,2; 4,5-8,8 %
- Starch: 156; 0-311 g/kg DM
- Fatty acids: 26; 8-53 g/kg DM
- NDF: 342; 232-539 g/kg DM

N. Nielsen, M. Åkerlind and H. Volden, unpublished

Dry matter intake and methane MJ_CH4 • DMI N. Nielsen, M. Åkerlind and H. Volden, unpublished

Fatty acids and methane

The Nordic data set showed:

- No effect of NDF, starch, sugar
- No effect of concentrate proportion

Implementation in NorFor

Metan (MJ/d) = 2,9 + 1,23*DMI - 0,116*FA(CV=12% & r²=0,80)

	Fatty acids, 25 g/kg DM				Fatty acids, 40 g/kg DM		
Milk, kg/d	DMI	CH4, MJ/d	CH4, MJ/kg milk		DMI	CH4, MJ/d	CH4, MJ/kg milk
14	13.8	17	1.20		13.8	15	1.08
24	17.9	22	0.92		17.5	20	0,82
34	22.2	27	0.80		21.8	25	0,74
44	26.7	33	0.75		26.2	31	0,69
DMI = dry matter intake, kg DM/d FA = fatty acids, gkg DM							

Conclusion methane

- The present data showed that only dry matter intake and dietary fat content significantly affected the methane production
- Increased dry matter intake reduce methane production per kg milk produced
- Increasing the dietary fatty acid concentration from 25 to 40 g/kg DM decrease methane production by 10%.
- Increased feed efficiency is an important strategy to reduce the climatic and environmental impact

A Comparison of Protein Evaluations by the NorFor and NRC-2001 Systems

Glen Broderick USDA-ARS, Madison, Wisconsin

&

Maria Åkerlind

Svensk Mjölk, Stockholm

3rd Nordic Feed Science Conference Uppsala

NRC-2001 versus NorFor

NRC-2001 versus NorFor: <u>Milk Protein Yield</u>

