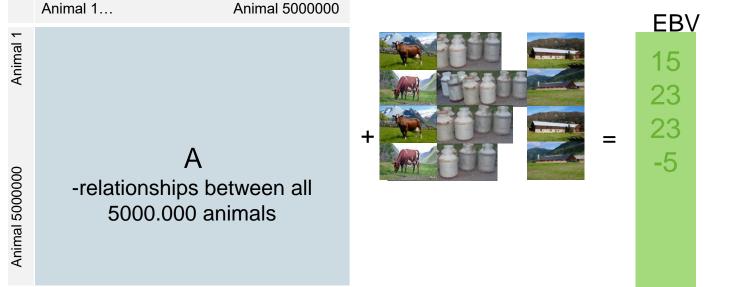


ERFARINGER MED SINGLE- STEP GENOMISK SELEKSJON

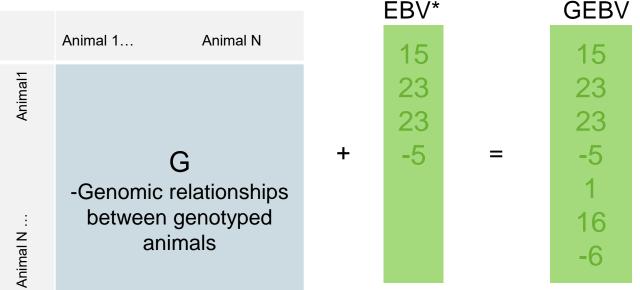
Håvard Melbø Tajet NÖK-konferansen, Rättvik, 23-25. juli, 2018

Avler for bedre liv

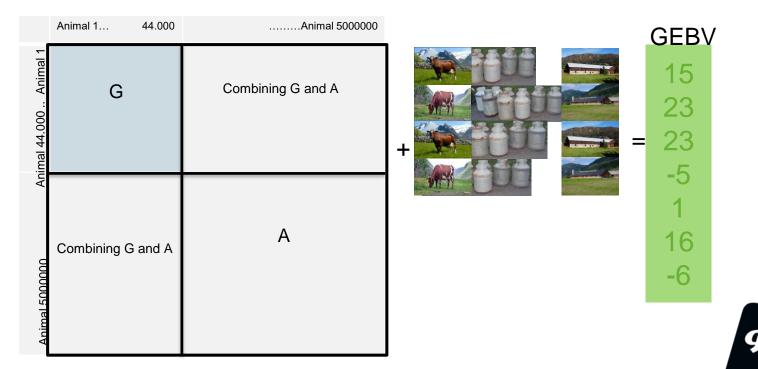

Milestones in implementation of GS in Norwegian Red

- 2012/2013
 - Implementation of two step GS for preselection of young bulls for progeny testing
- February 2016
 - Implementation of single step GBLUP
 - GS-bulls => Elite bulls
- January 2017
 - Implementation of BULLIT breeding values estimated every time we receive genotypes (2-3 weeks)
 - Heifers incl. young new born calves and cows updated EBVs every run
- June 2017
 - Farmer initiated genotyping
 - 18.000 females first year
- June 2018
 - Genetic groups ssGBLUP
 - New genomic relationship matrix in ssGBLUP, (imputet to109.000 SNPs)

Traditional estimation of breeding values (BLUP)


 Utilises pedigree based relationship- phenotypes and other relevant information

Two-Step genomic selection


Step 1. Utilises pedigree-info and phenotypes as previous slide (BLUP) Step 2. Includes EBV* (deregressed BV) from step 1 and all genomic information

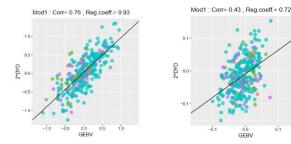
Singel Step Genomic Selection

• All pedigree-info, all genotypes and all fenotypes are utilised in one simultaneous analysis

Why did Geno choose the single step method?

Two step:

- Larger populations => CPU may be challenging with single step
- Advantage: Can handle very large number of genotyped animals
- Disadvantage: Selection bias may be a problem
- Single step:
 - Smaller populations => CPU is not a problem
 - Advantage: Avoids selection bias, utilise all genotyped animals, higher accuracy
 - Disadvantage: Struggling with number of genotyped animals beyond 100.000 + other bias issues (imputation+harmonizing A and G)
- Pragmatic approach
 - Choose the method that performs best cross validation
 - For the Norwegian Red population Single Step performed best (International studies support this)

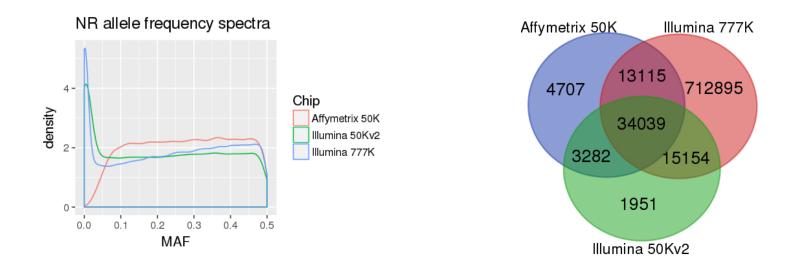

Cross Validation - Which method for EBV-calculations predicts the future performance of the cows best?

- Cow validation
 - Mask phenotypes of a set of cows
 - Calculate EBVs
 - Correlate the EBVs with the masked phenotypes
- Bull validation
 - Mask phenotypes of daughters and sisters of a set of proven bulls (simulate the state of a young bull calf)
 - Calculate EBVs of the bulls
 - Correlate the EBVs with the phenotypic performance of the daughters (Daughter Yield Deviations)

Parameters of interest

- Correlation Accuracy
- Slope Bias (inflation)
- Bias on mendelian sampling:

 $Mean(EBV) = \frac{SireEBV + DamEBV}{2}$


Genotypes - individuals

SNP chip	Genotyped males	Genotyped females	Time	Some bulls are genotyped	
Affymetrix 25K	2.316		->2009	on more than one chip, Σ>17.686	
Illumina 50K v1	1.242		2009-2010		
Illumina 50K v2	4.337	451	2010-2015		
Custom Affy 50K	9.171	26.469	2014->		
Illumina 777K	2.018		sporadic		
Total	17.686	26.920	SUM=44.606		

• Genotyped most AI-sires from 1970 onwards

Genotypes – chips

NRF-customized Affymetrix chip (2014)

- Removed low-MAF and low-quality SNPs from Illumina chips
- Good overlap with Illumina 50K & 777K for imputation
- Selected SNPs for important traits (polled, caseins, QTLs from GWAS)

Effect of including cow genotypes in the ssGBLUP

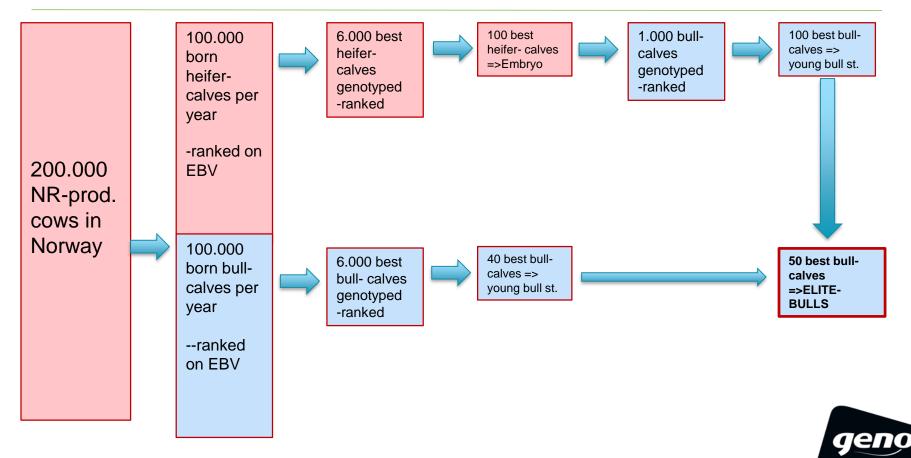
Calculations from winter 2017

8000 genotyped cows included

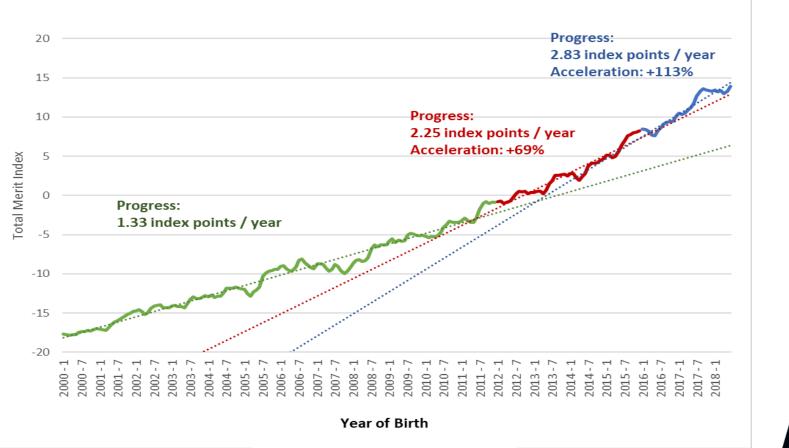
		Accuracy, 8000 genotyped cows	Increased accuracy, percentage
No of ins 1st to 4th lact	0.71	0.73	3.2 %
CFI, 1st to 4 th lact	0.48	0.50	3.7 %
Milk yield, kg prot 1st to 4th lact	0.72	0.75	4.1 %

Ca 8000 new Status July 2018 genotyped cows Total of 26.606 genotyped females included _ with phenotypes => Increased 8000 accuracy since 2017 New genotyped cows with phenotypes => Increase accuracy next 2000 2002 2004 2006 2008 2010 2012 2014 2016 1994 1996 1998 years Birth year

Norwegian Red Customised Affy 50K Chip:


Genotyping strategy for Norwegian Red				
Bull calves	6 000			
Heifer calves	6 000			
Farmer initiated females	18 000			
New genotypes per year	30 000			

Illumina 777K Chip:


Regenotype all new elite bulls + embryo heifers continously as they enter AI-station

Future selection strategy

Genetic trend

Conclusion

- SSGBLUP gives higher accuracy for **Norwegian Red**
- SNP clean-up and imputation has removed most bias issues
- Genoyping of cows increases accuracy on young bulls in addition to dams
- Geneic gain is accelerating and is expected to do so in the next generations
- Geno will continue improving
 - BLUP models
 - Utilisation of genomic information
 - Selection strategies
 - Genetic gain

Thank you!

